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Abstract. The nonlinear interaction of light with matter is described from a quantum- 
statistical point of view. The phenomena of two-photon emission and two-photon ab- 
sorption including both the single- and two-mode cases and the Raman effect are discussed 
in detail. A master equation for the density operator of the light fields alone is derived. 
This operator equation is converted to a c number equation and analytic solutions are 
obtained for the diagonal matrix elements of the density operator in the Fock representa- 
tion. No linearizing approximation is introduced. These solutions allow one to compute 
the moments of the photon distribution for the above nonlinear processes. 

1. Introduction 

A quantum-statistical description of the nonlinear interaction of light with matter is 
presented. This description is based on a hamiltonian formulation of the nonlinear 
interaction with both atoms and the electromagnetic field quantized (Shen 1967, Walls 
1971). Loss mechanisms are neglected in this description. The central part of our 
analysis is based on an equation of motion derived for the density operator of the light 
field alone, the atomic variables having been removed by a tracing procedure. This 
equation was first derived by Shen (1967) in operator form. Analytic solutions to this 
equation have not however been presented except in special cases. We refer here to the 
work of Lambropolous (1967) on the degenerate case of two-photon emission into a 
single mode and Agarwal(l970) on the degenerate case of two-photon absorption from 
a single mode. Analytic solutions to a master equation describing the Raman effect 
where the parametric approximation has been made for the pump field have recently 
been presented by Walls (1973). This approximation however, linearizes the system and 
no allowance for pump depletion is included. 

It is the purpose ofthe present paper to present analytic solutions to nonlinear master 
equations for a variety of nonlinear optical phenomena. Since the operator master 
equation is inaccessible to analytic solution we resort to finding solutions for the matrix 
elements of the density operator in the Fock representation. In order to determine the 
mean number and higher-order moments of the photon distribution it proves sufficient 
to solve for the diagonal matrix elements of the density operator. 

The examples we consider are two-photon emission and absorption including both 
the single- and two-mode cases and the Raman effect. The nonlinear differential difference 
equations derived for the diagonal matrix elements of the density operator are solved 
either by Laplace transforms or a generating-function technique depending on which 
proves more readily applicable. Analytic solutions for the photon distributions are 
derived and the time evolutions of the mean number and variance of the distributions 
are presented. 
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2. Hamiltonian formulation of the nonlinear interaction 

The electric-field operator for the free field may be expanded in terms of normal modes 
as (Glauber 1963a, b) 

[uk(t)uk(r)- at( t )uf(r)]  
k 

where ak(t)  and u l ( t )  are the boson annihilation and creation operators for the kth mode. 
The effects of the linear polarizability in a non-dissipative isotropic medium may be 
accounted for by including a dielectric constant c = 1 +4nx where x is the linear suscepti- 
bility of the medium (Shen 1967). The mode functions are then taken to satisfy the wave 
equation 

with the orthonormality condition 

The total hamiltonian H describing the interaction of the electromagnetic field with 
a nonlinear medium may be expressed as the sum of a free hamiltonian H ,  and an 
interaction hamiltonian H ,  

H = H,+H, .  (2.4) 
We consider the medium to consist of an ensemble of two-level atoms with transition 
frequency R. Hence the free hamiltonian may be written 

where the cEi and cJi are the fermion annihilation and creation operators for the c( level 
of the ith atom. 

A general interaction hamiltonian describing an n photon process may be written as 
(Shen 1967, Walls 1971) 

m n 

H ,  = A I ( ” ) C c ~ i c l i  E;-)(r i )  n Ei+)(ri)+adjoint (2.6) 
i j =  1 k = m + l  

where is the matrix element for an n photon transition consisting of m emissions and 
n - m  absorptions. We take E:” to represent a single mode of the electromagnetic 
field (this is appropriate for cavity modes) 

(2.7) 
Making this substitution for EL-) and E:” in equation (2.6) the interaction hamiltonian 
may be written in the form 

EL+)(ri) = {Ei - ) ( r i ) }+  = i(thOk)1/2uk(ri)uk. 

Hi = C ~ L ! “ ) C ~ ~ C ~ ~ O ( ” )  +adjoint 
i 

where 
m n 

0‘”) = n uj’ n ak 
j = 1  k = m + l  
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and 
m 
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(2.10) 

No account of losses is included in the above description. 

3. Master equation for the light field 

The equation of motion for the density operator x of the light-atom system is given by 

where H,(t)  is the interaction hamiltonian in the interaction picture. We consider the 
atomic system to be in thermal equilibrium at temperature T. The density operator p 
of the field alone at  time t is obtained by tracing out over the atomic variables: 

We assume that the thermal equilibrium of the atomic system is not disturbed by the 
photon fields thus we may write 

(3.3) 

(3.4) 

where p,(O) is the thermal equilibrium density operator for the ith atom. 
The equation of motion for p(t) may then be derived using the Born and Markoff 

approximations by standard techniques. (For a complete discussion of the derivation 
of quantum-mechanical master equations in the context of quantum optics see the 
excellent review articles of Haken 1970 and Agarwal 1973.) The result obtained is 

- p,([O'"'p, O'"'+] + [O'"', pO'"'+]) - k m 3 " - m p 2 ( [ 0 ' " ' ,  O'"'+p] + [PO'"', O'"'']) (3.5) - a P  - km,"  - m 

at 

where 

k"."-" = 2ng(Q)(8(")1' fi (+ho, ) j  d3rN(r) fi Iujr)12 (3.6) 
1=1 V j =  1 

and g(o) is the lineshape function for the atoms. p1 and p2 are the thermal equilibrium 
occupation numbers for the atomic levels 11) and 12) and N(r)  is the atomic density in 
the medium. We have here only included resonant transitions where 

i =  1 k = m + l  

The equation (3.5) is popularly known as the master equation for p. 
In order to  obtain the complete statistical description of the light field one must 

know p completely. However, the salient physical features of the light may be obtained 
from the moments of the number operator : Tr{(a!aJkpp) which do not require a complete 
knowledge of p. If we consider a single mode interacting with the medium the kth 
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moment of the number operator is given by 
00 

Tr{(ata)kp} = n k ( n l p l n ) .  
n = O  

(3.7) 

We see that only the diagonal matrix elements of p (in the number representation) are 
needed in order to obtain the mean photon number and the higher moments. It will 
therefore only be necessary for us to solve the above master equation for the diagonal 
matrix elements of p .  

4. Two-photon emission 

4.1. Single-mode case 

We shall first consider the case of two-photon emission into a single mode. The popula- 
tion of the atomic ground state is considered to be completely depleted (bl = 0) and the 
population of the upper level of the atoms is held constant by external pumping. The 
master equation for two-photon emission follows then as a special case of equation 
(3.5) with 0(2) = aa 

(4.1) - -  a p  - - k([aa, a+a+p] + [paa, atat]) 
at 

where we have set k(’,O) = k. 

tion which follows immediately from equation (4.1) is 
The equation of motion for the diagonal matrix elements of p in the Fock representa- 

- n(n - l ) p n  - - (n  + 2)(n + l)p, _ -  ’Pn 
aT 

where T = 2kt and p ,  = (nlpln). 
The solution to equation (4.2) has been given by Lambropolous (1967). We shall 

include the results here for completeness. The equation may be solved by Laplace 
transforms yielding 

where 

An initial coherent or chaotic distribution of photons may be accounted for by putting 
the appropriate initial distribution &(O) directly in equation (4.3). 

The time-dependent behaviour of the mean number and variance of the photon 
distribution for an initial vacuum state are shown in figures 1 and 2 respectively. 
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r 

Figure 1. Two-photon emission-initial vacuum state. Graph of the mean number of 
photons i against T for single-mode and two-mode emission: A, single mode: B, two mode. 

r 

Figure 2. Two-photon emission-initial vacuum state. Graph of the variance of the photon 
distribution against T for single-mode and two-mode emission: A, single mode; B, two mode. 

4.2. Two-mode case 

We now consider the case of two-photon emission into two modes with frequencies 
w l  and w 2 .  The master equation follows from equation (3.5) with 0'2' = ala2 : 

The equation of motion for the diagonal matrix elements of p follows immediately 
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where t = 2kt and we have used the notation P,,,,~, = (n,, n,lpJn,, n2). Thus the 
operator equation (4.1) has been reduced to a c number equation and is thus accessible 
to analytic solution. 

To facilitate the solution of equation (4.5) we assume that there is a definite number 
of photons present at t = 0, 

(4.6) N o  = n,(O) - n,(O) = n(: - ny . 

Then since [ H ,  .$a2 -a:al] = 0, n,(t)-n,(t) is a conserved quantity so that 

N O  = n2(t) - nl(t), for all t. (4.7) 

Using this constant of the motion in equation (4.5) to eliminate n, yields 

where we have set n ,  = n and summed over n2 to obtain the reduced density operator 
for mode 1. We proceed to solve equation (4.8) by the method of Laplace transforms. 
The Laplace transform of equation (4.8) is 

where 

P,,(s) = JOm e-sfpn(t) d7. (4.10) 

The solution of equation (4.9) is readily determined to be 

pn(s) = n!(No+n)! 1 p,,(O) m ! ( N o + m ) !  n [ s+ (q+ l ) (No+q+l ) ]  

Inversion of equation (4.1 1) yields 

n n 

(4.1 1) i q = m  I-’ . m = O  

(4.12) 

where 

( i - j ) (No+2+j+i)  
i = m  
i # j  

Recalling the initial condition pm(0) = Ljm,ny we obtain the following expression for the 
distribution of photons in mode 1: 

n < ny. (4.13) 
An expression for the distribution of photons in mode 2 may be derived in a like manner. 
An initial number state for the photon field is not however a realistic description for the 
light fields encountered in optics which are more realistically represented by a dis- 
tribution in photon number. 
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If initially the photon distributions in modes 1 and 2 are given by Pl(ny) and P2(n;) 
respectively then the photon distribution in mode 1 at time t is  given by 

(4.14) 

where we have denoted the expression for p,(z) in equation (4.13) as pn(ny, n: ,  5) .  

For a field initially in a coherent state such as an ideal laser field P(no) is given by a 
Poisson distribution whereas for a field initially in a chaotic state P(no) is given by a 
Bose-Einstein distribution (Glauber 1963a, b). 

The time evolutions of the mean number and variance of the photon distribution for 
an initial vacuum state are shown in figures 1 and 2 respectively. On comparison of the 
single- and two-mode cases one sees a much more rapid increase in both mean number 
and variance of the photon distribution for two-photon emission into a single mode. The 
noise of course arises from spontaneous emission. This is amplified by stimulated 
emission, the amplification being greater if all the photons are concentrated in a single 
mode. 

5. Two-photon absorption 

5.1. Single-mode case 

We consider the case of two-photon absorption from a single mode. The atomic system 
is considered to be at  a low temperature where the atoms are all principally in their 
ground state, thus b1 = 1, p2 = 0. The master equation may be deduced from the general 
equation (3 .5 )  yielding 

(5 .1 )  
aP 
at 
- = k([aap, atat] + [aa, patat]) 

which leads to the following equation for the diagonal matrix elements of p :  

(5.2) 

where z = 2kt. To solve this equation we introduce the generating function F(x, t) 
defined by 

-- - ( n  + l ) ( n  + 2)pn+ - ( n  - l ) n p ,  aT 

m 

F(jc, z) = 1 Pn(T)X",  T 2 0 and 1x1 < 1 .  
n = O  

In terms of this generating function equation (5.2) may be written 

aF a2F 
- = (1 - x 2 ) 7 .  az ax 

(5.3) 

(5.4) 

A general solution to this equation may be obtained using a separation of variables 
technique (McQuarrie 1967) yielding 

F(x ,  z) = 
m 

AnCn- "'(x) exp[ - n(n - l ) ~ ] ,  (5 .5 )  
n = O  

where C; 1'2(x) is a Gegenbauer polynomial. 
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Agarwal (1970) has obtained such a series solution for this problem but did not 
explicitly evaluate the coefficients A,,. We proceed here to evaluate the coefficients A ,  
from the initial condition F(x, 0). By differentiating the initial condition with respect to x 
and using the following properties of the Gegenbauer and Legendre polynomials: 

(5.6) 

x'P,,(x)dx = 0 (j. < n)  

J d - ( A  + 1) 
2 l+  'r( 1 ++(E. - n))r(#. + n + 3)) 

Jol x'Pp,(x) dx = 

(5.7) 

together with the orthogonality of the Legendre polynomials we obtain 

(5.10) 

This determines F(x,O) apart from a constant which is defined to be zero by setting 
A ,  = 1. The equations ( 5 . 9 ,  (5.9) and (5.10) then completely define F(x, 7). Initial 
coherent or chaotic states of the photon field are accounted for by substituting the 
appropriate distribution directly in equations (5.9) and (5.10). 

The mean number and second factorial moment of the photon distribution may be 
obtained directly from F(x, 5 )  using the relations 

x =  1 

This yields 
03 

( n )  = - An exp[ -n(n - 1)7] 

(n(n-1)) = -$ 1 n(n-l)Anexp[-n(n-l)r] 

n =  1 

io 

n = 2  

(5.11) 

(5.12) 

(5.13) 

(5.14) 

The time evolution of the mean number of photons for an initial number state is shown 
in figure 3. It is well known that the two-photon absorption rate from chaotic light 
exceeds (by a factor of two for short times) that from coherent light (Teich and Wolga 
1966). 

5.2. Two-mode case 

For two-photon absorption from two modes with frequencies w1 and w2 the master 
equation which follows from equation (3.5) is 

(5.15) aP 
- = N a , a , p ,  441 + [ala2 3 P4a:I) 
at 
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Figure 3. Two-photon absorption-initial number state. Graph of the mean number of 
phonons f i  against T for absorption from a single mode and two modes for (n(0)) = 10: 
A, single mode; B. two modes. 

which leads to the following equation for the diagonal matrix elements of p :  

(5.16) 

To facilitate the solution of equation (5.16) we assume that at f = 0 there is a definite 
number of photons ny,ni  present in each mode. The difference in photon number 
N o  = n i  - ny is a constant of the motion. Equation (5.2) may then readily be transformed 
into an equation for the reduced density operator for mode 1 : 

(5.17) 

where we have set n ,  = n. Again this equation proves tractable to solution by the 
generating function technique. Multiplying equation (5.17) by xn and summing over n 
gives the following partial differential equation for the generating function F(x, T) : 

d F  a2F  aF 
- = x ( l - x ) ~ + ( N o + l ) ( l - x ) - - .  aT ax ax (5.18) 

A general solution of this equation may be obtained using a separation of variables 
technique (McQuarrie 1967) with the result 

(5.19) 

where J n  is a Jacobi polynomial. 

to x. With the help of the relation (Abramowitz and Stegun 1965) 
The A ,  may be calculated by differentiating the initial condition F(x, 0) with respect 

(5.20) 
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and the orthogonality relation 

(5.21) 

where T(x) is the gamma function, together with the initial condition p,(O) = 6,,,p 
we find 

n > ny .  

Setting A .  = 1, the equations (5.19) and (5.22) then completely determine F ( x ,  T )  and 
hence the p.. The mean number and higher factorial moments may be obtained directly 
from F ( x ,  t) using the relations (5.11) and (5.12). This yields 

(5.23) 

The time evolution of the mean number of photons for both modes initially in 
number states is shown in figure 3. On comparison of the one- and two-mode results 
it is seen that a higher rate of absorption occurs from a single-mode source. It is clear 
that greater efficiency may be achieved in multi-photon absorption experiments using 
a single-mode rather than a multi-mode light source. This effect becomes increasingly 
marked the higher the order of the multi-photon process. 

When the field mode at one frequency is considerably more intense than the other 
mode the two-photon transition changes to a 'pseudo-one-photon' transition. That is 
when N o  = n:-ny is very large only the first term in the expansions (equations (5.23) 
and (5.24)) is necessary and the expressions for the mean and second factorial moment 
reduce to 

(n) = nye-@' (5.25) 

(n(n-1)) = ny(ny-l)e-2n?r (5.26) 

which correspond to the expressions obtained for a one-photon absorption process. 
For initial photon distributions in modes 1 and 2 given by Pl(ny) and P,(n:) the 

photon distribution at time t is obtained by the averaging procedure described by 
equation (4.14). For example a tunable two-photon absorption experiment using a laser 
mode with frequency w1 and a tunable thermal source in mode 2 would require a 
Poisson distribution for Pl(ny) and a Bose-Einstein distribution for P2(n:). 

6. The Raman effect 

The Raman effect is also described by the general master equation (3.5). In the Raman 
effect an  incident laser photon at frequency oL is annihilated and either a Stokes photon 
with frequency os = oL - R or an anti-Stokes photon with frequency cod = oL + R is 
emitted. The Stokes process is accompanied by an atomic excitation with energy hR 
and the antistokes process is accompanied by a corresponding de-excitation of the 
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atoms. A similar master equation involving the Raman scattering from phonons has 
been considered by Walls (1973). Walls gives solutions for both the density operator 
of the Stokes field alone and the coupled Stokes, anti-Stokes density operator. However, 
in his analysis the parametric approximation is made for the laser pump field and hence 
his results do not include pump depletion. 

Here we wish to present a solution to the nonlinear problem, thus including laser 
depletion. We shall, however, limit our considerations to the Stokes effect alone, 
neglecting anti-Stokes and higher-order Stokes generation. 

The master equation for the density operator of the coupled Stokes laser field may 
be obtained from the general master equation (3.5) with the substitution 0‘” = aLai 
where aL, a, are the annihilation operators for the laser pump and Stokes modes respec- 
tively. This substitution yields 

9 = kP,([a,a$p, atas]+ [aLaL p a t a d  -kP,([a,ai, atasp1 + [ p a d  a2asl) (6.1) 
at 

where we have set k‘’ , ’ )  defined by equation (3.6) equal to k .  We further consider the 
temperature of the medium to be low so that N 1 ,  p2 z 0. This justifies our neglect 
of the anti-Stokes production. The equation of motion for the diagonal matrix elements 
of p is 

(6.2) -- a P n , , n s  - ~ S ( U L  + 1)PnL+ 1 , n . q -  1 - n ~ ( n , +  1)PnL.n.q ar 

where r = k t .  We note that nL(t)+ ns(t) is a constant of the motion, hence if initially nL 
and ns are well defined with nE+ng = N o  say at t = 0, then n,(t)+n,(t) = N o  for all 
time. Using this property we may reduce equation (6.2) to an equation of motion for the 
density operator of the Stokes field alone 

(6.3) -- a” - n(No  - n+ l )pn -  , -(n+ l ) ( N o  -n )p ,  aT 
where we have set n, = n. Taking the Laplace transform of equation (6.3) we obtain the 
following solution for &(s), the Laplace transform of p , ( ~ )  : 

n < N o  [ n !  ( N o - m ) !  P A O )  
pn(s) = ( N o - n ) !  m = O  m !  Fly,, [ s + ( j + l ) ( N o - j ) ] ’  

The inverse transform for n < N 0 / 2  is 

where 

( j - l ) [ ( j + l + l ) - N o ]  
‘ i + j  

For n > N0/2  the denominator in equation (6.5) contains repeated factors so that the 
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inverse transforms will involve convolutions. For example for N o  even 

i +j 

The initial photon distribution of the pumping field may be taken into account by a 
similar averaging procedure to that described by equation (4.14). 

The time evolution of the mean number of Stokes photons for an initially coherent 
laser pump is shown in figure4. Comparison is made with the predictions of the approxi- 
mation solution (see equation (7.10)) and the solution deduced using the parametric 
approximat ion. 

Figure4. Raman effect-initial coherent laser pump. Graph of the mean number of Stokes 
photons against T for (n,(O)) = 10, (n,(O)) = 0: A, exact solution: B, approximate solution: 
C, parametric approximation. 

7. Approximate methods of solution 

Instead of attempting to solve the master equation directly one may first derive the 
equations of motion for the mean number and higher-order moments of the photon 
distribution. These differential equations are then amenable to certain approximate 
methods of solution as we shall illustrate in the examples chosen below. 
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7.1. Two-photon absorption-single mode 

The equations of motion for the mean and second-order moment of the photon distribu- 
tion in the case of two-photon absorption from a single mode derived directly from 
equation (5.2) are 

(7.1) 

These equations form part of an infinitely coupled set. They may, however, be solved 
approximately in the limit where the variance of the photon distribution is very small in 
comparison with the mean. That is, we ignore fluctuations and set ( n 2 )  N (n)’ in 
equation (7.1), and ( n 3 )  N ( n ) ( n 2 )  in equation (7.2). The approximate solutions to 
equations (7.1) and (7.2) are then 

M T ) >  2: [(n(O)> + (n(0)>(1- (n(O)>) 4- M O ) >  (7.3) 

From the above results we may estimate the variance in the photon distribution for 
various initial states. 

(i) For an initial number state no the coefficient of variation is 

(ii) For an initially coherent state with a mean photon number no the coefficient of 
variation is 

7.2. Two-photon absorption-two modes 

In the case of two-photon absorption from two different modes the equation of motion 
for the mean number of photons in mode one may be derived directly from equation 
(5.17) with the result 

Again we ignore the variance in the photon number distribution and approximate 
(n: )  2: (nl)’. The solution to equation (7.7) may then readily be shown to be 

which is in exact agreement with the classical result obtained by T P McLean (1963, 
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unpublished lecture notes). This is not unexpected since spontaneous emission which is 
not included in a classical analysis plays no role in a pure absorption process. 

7.3. Two-photon emission-single mode 

The time evolution of the mean photon number in two-photon emission into a single 
mode may be derived from equation (4.13), and is : 

-- d(n) - 2(nZ)+6(n)+4. 
d t  (7.9) 

Employingthe approximation (n’) z (n)’, the solution to equation (7.9) is found to be 

(7.10) 

where no is the initial photon number. This expression differs from what one would 
obtain by a purely classical calculation since the onset of radiation by spontaneous 
emission is included explicitly. 

7.4. The Raman eflect 

The approximate equation of motion for the mean number of Stokes photons derived 
from equation (6.2) by neglecting the variance in the photon number is 

(7.1 1) 

where nL and n, are the mean number of laser and Stokes photons respectively. The 
solution to this equation is 

(7.12) 

We note that this solution differs significantly from the classical results obtained by 
McLean (1963, unpublished) and Bloembergen (1965) since it allows a build-up of 
Stokes radiation directly from the vacuum by the amplification of spontaneous emission. 
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Note added in proof. A recent discussion of photon statistical properties in nonlinear 
optics has been given by Loudon (1973) who also obtains some of the approximate 
solutions reported in 4 7. 



A master equation approach to nonlinear optics 

References 

Abramowitz M and Stegun I A 1965 Handbook of Mathematical Functions (New York: Dover) 
Agarwal G S 1970 Phys. Ret.. A 1 1445-59 

~ 1973 Progress in Optics vol 1 I ,  ed E Wolf (Amsterdam: North Holland) 
Bloembergen N 1965 Non Linear Optics (New York: Benjamin) 
Glauber R J 1963a Phys. Reo. 130 2529-39 

~ Phys., Rev. 131 276&88 
Haken H 1970 Handb. Phys. vol XXV/2C (Heidelberg: Springer Verlag) 
Lambropolous P 1967 Phys. Ret.. 156 28697 
Loudon R 1973 The Quantum Theory of Light (Oxford: Clarendon) 
McQuarrie D A 1967 J. appl. Prob. 4 413-78 
Shen Y R 1967 Phys. Reo. 155 921-31 
Teich M C and Wolga G J 1966 Phys. Rev. Lett. 16 625-7 
Walls D F 1971 J .  Phys. A:  Gen. Phys. 4 813-26 

~ 1973 J .  Phys. A :  Math., Nucl. Gen. 6 496505 

63 1 


